Kevin Bartley

Change Data Capture Empowers Businesses to Move at the Speed of Their Data

Data is the core of the modern economy. Businesses in every sector succeed or fail based on the data they collect, and what they do with that data. Today, companies in crowded markets gain a competitive edge not only from product differentiation, but also from efficient data processes.

Key among these efficiencies is speed. In order to make the best decisions, and target the proper customers, businesses need to act on up-to-date data. According to Exasol’s 2019 Data Decisions Report, 57% of companies are negatively impacted by data access that is too slow or too poor in quality.

Companies must have the right data at the right time to compete in a 24/7 global economy. But many teams still rely on delayed batch processing to sync databases. Batch processing does not sync databases in real-time. And the batch method remains broadly popular. A recent study found that 75% of businesses still rely on batch processing.

But right now, across industries, a big shift is underway. Many businesses are starting to use change data capture (CDC) to sync databases more efficiently. Change data capture empowers businesses to move at the speed of their data. CDC instantly and automatically syncs databases as soon as the source data changes.

Change data capture enables faster, more accurate business decisions, while minimizing resource expenditure. The technology’s instantaneous data updates, cost-effective incremental changes, and light IT footprint offer a win-win-win to businesses. With the right CDC technology, companies can leave the inefficiencies of bulk processing behind, forever.

Change data capture empowers businesses to move at the speed of their data. Read on for an overview of what CDC is, and what it can do for your data operation.

Change Data Capture (CDC): What to Know, How it Works

Change data capture tracks changes in a source dataset and automatically transfers those changes to a target dataset.

Changes are synced instantly or near-instantly. In practice, CDC is often used to replicate data between databases in real-time. CDC instantly and automatically syncs databases as soon as the source data changes. Essentially, CDC eradicates the siloization of data.

Despite the introduction of CDC, most teams still use batch processing to sync data. With batch processing:

  • data is not synced right away
  • databases slow production to allocate resources for syncing
  • data replication only occurs during specified “batch windows”

On the other hand, change data capture offers a new path forward. On a core level, change data capture:

  • constantly tracks changes in a source database
  • immediately updates the target database
  • uses stream processing to ensure instant changes

With CDC, data sources include operational databases, applications, ERP mainframes, and other systems that record transactions or business occurrences.

Targets include data lakes and data warehouses, including cloud-based platforms such as Google BigQuery, Snowflake, Amazon Redshift, and Microsoft Azure.

Once the data is replicated on the target database, teams can perform data analysis without taxing the production database.

In today’s 24/7 marketplace, this kind of setup is becoming closer to mandatory, as businesses cannot afford to slow production for any amount of time. Different technologies power change data capture offerings in today’s marketplace. These technologies include:

  • Timestamps – Tracks “LAST_UPDATED” and “DATE_MODIFIED” columns. This method only retrieves changed rows, and requires significant CPU resources to scan all the tables.
  • Table Differencing – Executes a diff to compare source and target tables. This will only load the data that differs. This method is more comprehensive than timestamps, but still places a big burden on the CPU.
  • Triggers – Triggers are set off before or after commands that indicate a change. This produces a change log. With this method, each table in the source database requires a trigger, straining the system.
  • Log-Based – Database logs are constantly scanned to detect changes. The changes are captured without adding additional SQL loads to the system. This removes significant stress on the CPU.

Change data capture enables teams to replicate data instantly and incrementally. CDC records data changes piece-by-piece, instead of relying on massive, all-at-once transfers.

This allows teams to stop treating data migrations as big “projects,” but rather as a byproduct of change data capture.

With CDC, data is always up to date. The source database and target database are continuously synced. Bulk selecting is a thing of the past.

Only the modified data is synced with the cloud DWH. All other data remains static. This saves a tremendous amount of time, resources, and funding.

4 Game-Changing Business Benefits of CDC

1. CDC Generates More Revenue

Data is only as valuable as its relevance. A data point that records a customer entering a brick-and-mortar store is not very valuable 12 hours later. By then, the customer could have found dozens of other places to buy a product. This is just one example, among countless others, of how out-of-date data can botch revenue opportunities.

But businesses that use out-of-date data don’t just risk losing individual deals. Companies that consistently use old data open themselves up to long-term operational consequences. These risks are hard to measure up front, and they’re even harder to reverse once a business’s data infrastructure is built.
With change data capture, the risks associated with out-of-date data are entirely eliminated.

Change data capture provides teams with instant access to the most up-to-date data. This allows businesses to make decisions and take actions with the best data available. CDC necessarily improves the speed and accuracy of the data. Not only is data updated faster, it is also always 100% accurate.

Change data capture enables businesses to act on opportunities quicker. Companies can beat competitors to deals, all while cycling through a higher volume of opportunities. CDC also provides higher data quality for decision making. All of this empowers businesses to make faster, smarter decisions that generate more revenue.

2. CDC Creates Savings

90% of the world’s data was created in the last two years. The infrastructure of the internet, built in some cases decades ago, does not have the bandwidth to transfer massive volumes of data instantly. This can become a serious problem for businesses that want to undertake projects with high data volumes, such as database migrations. These all-at-once data transfers severely congest network traffic, leading to cloud migrations that are slow and costly.

Change data capture, however, loads data incrementally as opposed to all at once. Each time a data point changes in the source system, it is updated in the target, requiring minuscule bandwidth. With CDC, businesses are never subjected to large data transfers that crush network bandwidth. This reduces the cost of data transfers and saves weeks, months, and sometimes years of time.

3. CDC Eliminates Opportunity Costs

One of the core issues with batch processing is that the method inherently creates opportunity costs. During data transfers, batch loads slow down production databases and degrade performance. This can create opportunity costs in the form of lost deals.
Consider an e-commerce site with higher customer churn because the overtaxed production database slows down the site an hour each day. This is why batch processing requires specified “windows” when the production database is less taxed. But in a 24/7 global economy, there’s never an acceptable time to degrade the performance of a production database.

Change data capture, particularly the log-based type, never burdens a production data’s CPU. Log-based CDC capture changes directly from database logs, and does not add any additional SQL loads to the system. Additionally, incremental loading ensures that data transfers have a negligible impact on database performance. What this means, in business terms, is that CDC eliminates the opportunity costs that arise when a business is forced to slow down vital tech infrastructure.

4. CDC Protects Business Assets

Data is not just something a company collects. In today’s environment, data is the lifeblood of a business. Data is a business asset just as much as equipment or property are. However, mishaps that damage or delete data are common. For most businesses, such an event is not a possibility, but a probability. And for many companies, luck is the only thing keeping the incident from turning into a data catastrophe.

Change data capture protects data, a prime business asset, from deletion and destruction. By tracking changes not just to data, but to metadata as well, CDC offers companies that experience data loss a chance to repopulate impacted datasets. Once data is gone, it can’t be regenerated. But with the protection of change data capture, businesses can recover their essential data to fuel further business growth.

Change Data Capture: Gaining the Competitive Edge

Change data capture is more than just a superior technology. For many forward-thinking businesses, CDC is a competitive advantage. By staying several steps ahead of the market, companies with CDC can move at the speed of their data, and surpass the vast majority of businesses that are still stuck with batch processing.

Download our new eBook, The Business Case for Change Data Capture (CDC), to learn why implementing CDC is the best option for your business.

Learn How CDC Boosts Business Performance